Brick Math Fraction Multiplication Chapter Assessments Answer Key

Chapter 1

1. $2 / 3 \times 1 / 2$

Model 2/3:

Because $2 / 3$ is being multiplied by $1 / 2$, make 3 sets of two as the denominator. Place a one on top of two of those sets to show the numerator. To show the solution of the fraction multiplication, use a 1×2 brick as the numerator and a 1×6 brick as the denominator.

2. To simplify the fraction $2 / 6$, cover the model with 1×2 bricks to show 1 brick in the numerator and 3 bricks in the denominator, or 1/3.

3. $6 / 8 \times 1 / 2$ means $6 / 8$ sets of $1 / 2$.

Chapter 2

1. $2 / 3$ of 9

One possible way to model the solution:
Start by modeling 9 sets of $2 / 3$.

Model 18 with the 1×2 bricks that represent the numerators. Then use enough 1×3 bricks (from the denominators) to equal the model. There are six 1×3 bricks, so the answer is $6.2 / 3 \times 9=6$

Another possible way to model the solution:
Model 9 studs using three 1×3 bricks (denominator). Two 1×3 bricks model the numerator. These show 6 studs, so the answer is 6 .

2. 4 sets of $1 / 2=4 \times 1 / 2$

One possible way to model the solution:
First make 4 sets of $1 / 2$

Move the numerator bricks to show 4 over one denominator brick that shows 2.

Add another 1×2 brick to make the top even with the bottom. This shows two 1×2 bricks, so the answer is $2.4 \times 1 / 2=2$
3. Answers may vary. One possible solution:

Chapter 3

1. $3 / 4=1 / 4+1 / 4+1 / 4$

Three sets of $1 / 4$ are the same as $3 / 4$, because you add the numerators and keep the same denominators. These are fractions with like denominators.

2. $1 / 3 \times 1 / 3$

3. A unit fraction is one part of the entire fraction. It is a fractional part that has 1 as the numerator.
4. Answers will vary. Three possible models include:

1. Models will vary. One example:

2. $1 / 4 \times 4 \times 3 / 4$

Start with $4 \times 1 / 4$.
Model 4 with one 1×4 brick, then model each $1 / 4$ with a 1×1 brick. This shows $4 \times 1 / 4=1$
Now do the second part of the problem, $1 \times 3 / 4$.
Model 1 with a 1×4 brick. Use a 1×3 brick and a 1×1 brick to model $3 / 4$ and $1 / 4$. This shows the final solution as $1 / 4 \times 4 \times 3 / 4=3 / 4$

Now show $3 / 4 \times 4 \times 1 / 4$:

Combine the four models to show 12/4.

Show that $12 / 4$ is equivalent to 3 . This shows $3 / 4 \times 4=3$

Now do the second part of the problem, $1 / 4 \times 3$. This model shows $1 / 4$

3. $1 / 2 \times 3$ and $3 \times 1 / 2$

$3 \times 1 / 2$:
Model $3 / 1$ and $1 / 2$. Multiply across:
$3 \times 1=3$ and
$1 \times 2=2$
The solution is $3 / 2$, which is $1 \frac{1}{2}$.

Chapter 5

1. To find the area of a given space, multiply the length by the width.
2. $2 / 3 \times 3 / 4$

Model $2 / 3$ and $3 / 4$

Model the multiplication of the denominators: 3×4 and 4×3

Model $2 / 3$ of the first denominator of 12 Model $3 / 4$ of the second denominator of 12

Place the $2 / 3$ of 12 over the $3 / 4$ of 12 . Mark their intersection with a 2×3 brick that shows 6 , which is the numerator.

Model the numerator of 6 over the denominator of 12 , or $6 / 12$.

Simplify the fraction by modeling 1 brick over 2 bricks to show $1 / 2$.

3. Models will vary. They should be similar to the models used for problem \#2.

Chapter 6

1. Answers may vary. One solution: $2^{1 ⁄ 2}$

A 1×1 brick represents $1 / 2$.
The model shows
$2 / 2+2 / 2+1 / 2=21 / 2$
2. $3 \frac{1}{2} \times 2 \frac{1}{2}$:

A 1×1 brick represents $1 / 2$.
The top model shows $2 / 2+2 / 2+2 / 2+1 / 2=31 / 2$

The bottom model shows $2 / 2+2 / 2+1 / 2=21 / 2$
71×1 bricks model $31 / 2$ vertically.
51×1 bricks model $2^{1 ⁄ 2}$ h horizontally.
The overlapped brick in the upper left corner belongs to both models.
Fill in the entire area with bricks.

Fit sets of 4 on top of the model, because the denominators multiplied together equal 4.
($2 \times 2=4$)
The model shows the solution of 8 sets of 4

3. $1-2 / 3 \times 4-1 / 3$

A 1×1 brick represents $1 / 3$.
The top model shows $3 / 3+2 / 3=1-2 / 3$.
The bottom model shows $3 / 3+3 / 3+3 / 3+3 / 3+1 / 3=4-1 / 3$.

5 1x1 bricks model 1-2/3 vertically. 131×1 bricks model $4-1 / 3$ horizontally.
The overlapped brick in the upper left corner belongs to both models.
Fill in the entire area with bricks.

Fit sets of 9 studs on top of the model, because the denominators multiplied together equal $9 .(3 \times 3=9)$ The model shows the solution of 7 sets of 9 studs with 2 studs left over, or 7-2/9.
$1-2 / 3 \times 4-1 / 3=7-2 / 9$

